justfood, сервис доставки здорового питания на каждый день. Компания работает восемь лет, доставляет питание в Москве и Подмосковье.
Когда justfood обратилась к нам в 2020 году, бизнес находился в стадии масштабирования и активного роста, уже были найдены
Клиент пришёл с проблемой: сбор аналитики был сложным и долгим. Специалисты вручную вытаскивали всю информацию из разных каналов, а потом формировали отчёт по каждому каналу отдельно. Это занимало много времени и данные быстро теряли актуальность. Нас попросили собрать всю аналитику в одном месте, автоматизировать этот процесс и увеличить количество активных подписок в два раза.
Product-Market Fit — степень соответствия продукта интересу и потребностям клиента.
Product-Channel Fit — степень соответствия атрибутов продукта требованиям конкретного канала продвижения.
Внедрили новую систему отчётности: все цифры, которые раньше собирали в сервисах вручную и размещали в Google Sheets, теперь находятся в одной большой маркетинговой базе данных. Сейчас каждое утро компания получает актуальный отчёт по каналам. Это сильно упростило аналитическую работу и принятие решения, например какой канал эффективнее на данный момент.
Спустя год после внедрения сквозной аналитики, активных подписок стало в 2 раза больше.
На графике оборот компании justfood в годы после внедрения автоматизированной аналитики
Сергей Королев, СЕО justfood:
Внедрение единой системы добавило не только управляемости, но и прозрачности для всей команды. Благодаря корректным отчётам, мы все стали лучше понимать, куда расходуются средства, и с какой эффективностью: что происходит с привлечением новых клиентов, какая у нас конверсия. Появился общий контекст для всей команды.
Услуга
Внедряем сквозную аналитикуЗапускаем проекты под ключ: от проектирования и наведения порядка в данных до интеграции и обучения сотрудников
Провели этап проектирования: наша команда детально изучила
Валовые отчёты оценивались в разрезах LastClick. Что с точки зрения финансовой отчетности было верно, но со стороны маркетинга — нет. При этом в рамках существующей аналитики в Exсel строить когортные отчеты было трудозатратно.
LastClick-атрибуция показывает, какой маркетинговый канал привёл клиента к покупке, то есть, был последним перед целевым действием.
Неподходящие атрибуции. Использовались атрибуции LastClick и FirstClick. Эти модели неэффективны, если речь идёт о нескольких каналах продвижения. LastClick не покажет, как клиент принимал решение о покупке до ключевого перехода. А FirstClick показывает только первое касание, которое почти не играло роли в принятии решения о покупке. Каналы, которым присвоят конверсию эти модели атрибуции, могут быть слабыми, и при попытке их масштабировать, компания потеряет деньги.
Ошибочные выводы
FirstClick-атрибуция показывает первый канал, который затронул клиент, но не учитывает все последующие касания перед покупкой.
Некорректно оценивалась эффективность рекламных каналов. Основное продвижение шло через таргетированную рекламу в Инстаграм* и Facebook*. Кроме этого использовался канал блогеров, но в аналитике эффективности
Расхождения с подрядчиками. В сервисе, где закупили рекламу всё выглядит отлично, а в отчёте компании результаты сильно хуже. Это мешало принимать решения.
Стандартные расчёты. Аналитику каналов собирали двухнедельными периодами, а итоговые цифры — каждый месяц. Такой подход не показывает, какие каналы приносят прибыль, а какие бесполезны.
Компания Meta Platforms Inc., которой принадлежит Facebook, признана экстремистской, а её деятельность запрещена на территории РФ.
Отсутствие профилактики. Не было регулярных проверок здоровья данных: не проводилась проверка unknown source, разбор не привязанного, отслеживания корректного прокидывания параметров
Кроме проблем, которые я описал выше, была еще одна сложность — бизнес клиента отличается от стандартных моделей. Чтобы понимать всю ситуацию с рекламными кампаниями важно учитывать: количество новых подписок и LTV на одного клиента, эффективность каналов продаж и всю воронку в целом.
Unknown source — неизвестный источник
Андрей Щербаков, СМО justfood:
Мы хотели максимально оперативно получать
Начали с того, что внедрили настраиваемые модели атрибуции, которые учитывают все точки касания клиента. Конверсии теперь присваиваются не только поиску по бренду и каналам коммуникации, но и другим источникам, которые можно масштабировать: партнёркам, блогерам, соцсетям.
Для сотрудничества с блогерами внедрили систему уникальных промокодов. В отчётах настроили атрибуцию с приоритетом промокода. Это прояснило эффективность канала — кто из блогеров больше приводит клиентов. В итоге канал удалось успешно масштабировать.
Для соцсетей вывели на дашборд сразу три атрибуции: как видит результат рекламы подрядчик и как видит СМО, с учётом новой модели, где собраны все точки касания клиента.
Принимать решение о масштабировании стало проще, и рекламный канал в соцсети вырос в шесть раз без потери эффективности.
Дашборд — аналитическая панель, на которую выведены все ключевые метрики, показатели и цели процессов.
Андрей Щербаков, СМО justfood:
Удобно, что в новом отчёте мы можем сгруппировать источники по разным признакам, например, отделить экспериментальные кампании от стабильно работающих.
Далее мы сделали клиенту систему аналитики, и атрибуцию для основных этапов воронки на основе регистраций. Это упростило оценку эффективности: каналы привлечения новых клиентов оцениваются по тому, как они приводят новых клиентов. А каналы коммуникации — по тому как они дожимают привлеченных клиентов до покупки.
Триал — пробный период использования продукта с подключением платной подписки.
По каждому из основных этапов воронки теперь можно посмотреть отдельную атрибуцию.
Андрей Щербаков, СМО justfood:
Факт: через шесть месяцев количество клиентов удвоилось, стоимость привлечения клиента выросла на допустимые 20 %.
Здорово, что наиболее важные источники трафика можно выделить в отдельные отчеты со своими настройками и группировками. Для поисковой рекламы мы разделили брендовый и небрендовый трафик. В отчете по SEO — коммерческие и информационные запросы. А в сводке по блогерам создали группы по тематикам.
Мы углубили ежемесячную аналитику до ключевых слов, адсетов, креативов и привязали её к когортам, а не к месяцам, как было раньше. Сразу стало видно, какие каналы для привлечения работают лучше, а что можно отключить. Внедрение такого анализа помогло прогнозировать доход от клиентов на ранних этапах.
Адсет — группа объявлений в рамках одной рекламной кампании.
Когорта — сегмент целевой аудитории или группа людей, объединённая общими характеристиками.
Андрей Щербаков, СМО justfood:
Когортный анализ позволил ежедневно снимать данные об эффективности каждого канала и быстрее принимать правильные решения. До внедрения новой системы мы собирали отчёт по когортам руками, раз в пару недель.
Глубокая аналитика до LTV на уровне кампаний, адсетов, объявлений и ключевых слов позволяет качественнее управлять каждым каналом.
После работы с аналитикой каналов, мы разобрали взаимодействие с клиентами. Оказалось, что клиенты на рынке доставки рационов имеют свои особенности поведения: после небольшого периода, стандартные схемы работы реактивации перестают работать. Поэтому было принято решение: после определенного периода менеджеры считают таких уснувших клиентов новыми и соответственно с ними и работать.
В рамках прежней аналитики это было невозможно. Сейчас — вопрос секундного переключения модели атрибуции.
LTV — Lifetime Value или жизненный цикл клиента.
Андрей Щербаков, СМО Justfood:
Круто, что мы можем работать с разными моделями атрибуции, заводить кастомные. Например, с помощью атрибуции «Last Click 60 дней» мы начинаем считать новых пользователей, которые не были активны более 60 дней. Это помогает работать над реактивацией.
Результат: полностью автоматизированная система аналитики
Новая модель атрибуции для каждого из этапов воронки и правильный когортный анализ подтвердили гипотезу: пробный продукт с большой скидкой хорошо работает на конверсию в подписку.
Андрей Щербаков, СМО justfood:
Мы настолько привыкли и срослись с новой системой, что сейчас, сложно представить работу
Ребята
Сергей Королев, СЕО Justfood:
Благодаря
18 июня 2024
Отредактировали Виктория Шестерова и Лариса Васина
Инструменты
Инструменты
Шаблон воронки продажИнструменты
Кластеризатор ключевых слов на Power QueryУстройство агентства
Правила выживания для стажёров и сотрудниковИнструменты
Шаблон таблицы возможностейУправление
План обучения менеджеровПродолжая пользоваться сайтом, вы принимаете соглашение о передаче данных.